Pandit Deendayal Energy University

Teaching Scheme						Fluid Mechanics (22PCM203T)					
		Tea	CIIII	g scheme	Examination Scheme						
	т	Ρ	С	Hours/Week	Theory			Practical		Total Marks	
L .	"				MS	ES	IA	LW	LE/Viva		
2	1	0	3	3	25	50	25			100	

COURSE OBJECTIVES

- Inculcate the importance of fluid statics and dynamics.
- Acquire a sound knowledge on fluid properties and its transport.
- Familiar with various flow measurement and transportation devices.

UNIT I: Fluid properties and statics

Definition of fluid; Properties of fluids: Viscosity, compressibility and bulk modulus; Shear stress in a moving fluid; Difference between liquids and gases, compressible and incompressible fluids; Newtonian and non- Newtonian fluids; Continuum concept of a fluid: Statics of fluid systems, pressure and the variation of pressure due to gravity in a static fluid; Manometers: U-tube, differential and inclined manometers; Force on submerged bodies and centre of pressure.

UNIT II: Kinematics and dynamics of fluid flow

Fluid kinematics: Classification and types of flow; Velocity field and acceleration; Continuity equation and its applications; Stream line, streak line, path line, stream function and velocity potential function; Fluid dynamics: Reynolds experiment, laminar and turbulent flows, nature of turbulence and boundary layer; Euler's equation of motion; Bernoulli's theorem; Momentum equations and energy losses in fluid flow.

UNIT III: Dimensional analysis and flow measurement

Dimensional analysis: Dimensions of physical quantities, dimensional homogeneity, Buckingham pi theorem, important dimensionless numbers, model analysis (Reynolds, Froude and Mach number); Flow measurement: Application of Bernoulli's equation in pitot tube, venturi meter, orifice meter, rota meter, triangular and rectangular notch, mass flow meters, etc.

UNIT IV: Pumps and compressors

Classification of pumps: Characteristic curves, selection criteria; Types of compressors: COP and selection criteria; Compressible fluid flow; Ideal gas relations and energy calculations.

COURSE OUTCOMES

On completion of the course, student will be able to

CO1: Understand the properties of fluids and its static conditions.

- **CO2:** Illustrate the kinematics and dynamics of fluid flow.
- **CO3:** Apply Euler's and Bernoulli's equation in various flow systems.
- **CO4:** Estimate the energy losses in fluid flow.
- **CO5**: Apply dimensional analysis to predict physical parameters.
- **CO6**: Evaluate the performance characteristics of pumps and compressors.

TEXT/REFERENCE BOOKS

1. Bansal, R.K. "A Textbook of Fluid Mechanics and Hydraulic Machines", 10th Edition, Laxmi Publications (2018).

7 Hr.

7 Hr.

7 Hr.

Max. 28 Hr.

B. Tech. Petrochemical Engineering /SPT

7 Hr.

- 2. de Nevers, N., "Fluid Mechanics for Chemical Engineers", 2nd Edition, McGraw-Hill (1991).
- 3. Munson, B.R., Okiishi, T.H., Huebsch, W.W. and Rothmayer, A. "Fundamentals of Fluid Mechanics", 7th Edition, John Wiley Publication, (2012).
- 4. McCabe, W.L., Smith and Peter Hariott, "Unit Operations of Chemical Engineering", 7th Edition, McGraw-Hill, New Delhi, (2012).
- 5. White, F.M., "Fluid Mechanics", 7th Edition, McGraw-Hill Inc. (2011).

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100
Part A: 10 Questions each carrying 5 marks
Part B: 5 Questions each carrying 10 marks

Exam Duration: 3 Hr. 50 Marks 50 Marks